
IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified
Vol. 5, Issue 8, August 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5850 266

Iterative Pareto Principle for Software Test Case

Prioritization

Manas Kumar Yogi
1
, G. Vijay Kumar

2
, D. Uma

3

Assistant Professor, CSE Department, Pragati Engineering College, Surampalem, India
 1, 2, 3

Abstract: This paper introduces a repetitive nature of application of Pareto principle for test case prioritization. In

software testing, situations demand effective resource and time utilization which forces the testing team to execute the

test cases which uncover more number of bugs. So, taking the Pareto Principle we apply the 80-20 rule in a repeated

manner until a satisfiable state is reached. The proposed mechanism precisely does what it is modelled for, test case

prioritization.

Keywords: Pareto Principle, Testing, Prioritization, Bugs, Iterative

I. INTRODUCTION

Most applications today have been designed to include

some form of customization or extensibility including user

preference settings, scripting languages or APIs for

custom extensions using more traditional languages.

Software companies like Microsoft understand this, and

design for a product that addresses 80 percent of the

requirements, leaving the last 20% as customizations by

the end user. 80% of Defects are caused by 20% of Code

The concept here is the Pareto Principle, originally

described by Vilfredo Pareto and later formalized by

Joseph Juran. Of course, this is just a rule of thumb, but an

important one. Whether the percentages are really 70/30 or

90/10, the reality is that most things are caused by a few

underlying factors. For software testers, knowing this fact

can offer tremendous value. If a tester is simply looking at

a list of 100 bugs, it may not be clear if there is any

underlying meaning. But if the tester were to combine

those bugs based on some kind of category, it may be

possible to see that a very large number of bugs come

from very few places.

Here are a few recommendations for getting the most out

of this principle:

- Try to sort bugs by root cause and not by outcome.

Grouping all the bugs that made the software crash isn’t

that helpful. Grouping all the bugs that resulted from

module XYZ is more helpful.

- Work with developers to look for innovative groupings.

For example, 80% of the program’s bugs may result from

calling the same underlying library. However, that may

not be readily apparent from where the bugs occur within

the program.

- Remember that bugs may result from flawed procedures.

For software testers, knowing this fact can offer

tremendous value. If a tester is simply looking at a list of

100 bugs, it may not be clear if there is any underlying

meaning. But if the tester were to combine those bugs

based on some kind of category, it may be possible to see

that a very large number of bugs come from very few

places.

II.PROPOSED MECHANISM

For our proposed mechanism, we take a suite of test cases

,say test cases numbered from T1 to T10.Each test case is

tabulated as below with ability to uncover the specified

number of bugs. We have arranged the test cases in

decreasing order of the fault finding ability based on

number of bugs they have uncovered.

TABLE I

Test

Case

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

No. of

Bugs

found

10 9 8 7 6 5 4 3 2 1

We propose to apply the Pareto principle ie 80-20 rule to

this test cases. We advocate the principle as 80% of the

bugs are found by only 20% of the test cases.

In our case, out of 55 bugs found by the 10 test cases,80%

of 55 ie, 44 bugs are found by the test

cases,T1,T2,T3,T4,T5,T7.So,we have found the test cases

which are to be executed first when testing time is limited.

We now extend this principle iteratively till we get only

the test case which has the ability to uncover maximum

bugs.

We have presented in below table the iterations after

applying Pareto Principle to the data obtained from Table

I. In each iteration, the test cases which sum up to the total

of 80% of the bug count are mentioned in the same row.

For example, in first iteration, 80% of 55 test cases

(T1+T2+..+T10) is 44 which can be detected by 6 test cases

i.e, T1, T2, T3, T4, T5, T7 out of the total number of 10

test cases. In iteration 2 similarly, 80% of 44 =35 which

needs test cases T1, T2, T3, T4, and T10 to execute.

Likewise we apply Pareto rule until we reach iteration 7

where only a single test case T1 is obtained. We terminate

the iteration at this juncture as further down we don’t get

even single test case. Evidently, at least one test case must

be executed.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified
Vol. 5, Issue 8, August 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5850 267

TABLE III

Iteration

Number

80% OF TEST

CASES

Test cases

1 44 T1,T2,T3,T4,T5,T7

2 35 T1,T2,T3,T4,T10

3 28 T1,T2,T3,T10

4 22 T1,T2,T8

5 17 T1,T4

6 13 T1,T8

7 10 T1

Now, our aim is to construct a test cases execution order

with respect to the table above. This order will be the

prioritised test cases order for final execution of test cases.

For this, we scan the table from up to down and pick out

the test case which occurs maximum number of times in

each iteration.

In our example, it’s T1, which occurs 7 times. So, in

prioritised order T1 appears first .Then,T2 appears 4

times,T3,T4 appear 3 times each, then T10,T8 appears 2

times and finally T5 appears once. We can take a note that,

T6 appears 0 times in the table.Subsequently, T6 is to be

given least preference when we construct the test case

prioritization order. Hence we obtain the final test cases

execution order as stated below:

{T1, T2, T3, T4, T10, T8, T5, T7, T6}.

III.THREATS TO VALIDITY

Following are the threats to the validity of our model:

1. The nature of bugs are not considered, ie more than 2

test cases may find same nature of bug. We have assumed

only count of bugs for each test case.

2.We have stopped the application of Pareto principle

once the test case with highest count of bugs reaches 80%

of cycle i where i=1 to n. In our example, n=7.Beyond this

also we could proceed but our objective will not be strictly

satisfied.

3. Our model will behave in same way for substantial

amount of test cases say, when test cases are in 1000, we

could not experiment on that. That is the future work for

our proposed model.

IV.CONCLUSION

Pareto principle helps us in giving a direction towards

application test case prioritisation. When the testing team

has many test cases in hand then our mechanism can be

used to order the test cases giving priority to certain test

cases and leaving the rest. It saves time as well as testing

effort to a extent. How much time ,effort is saved that is

the scope of our future work and we would like to extend

this model to regression test suites as well .Our paper aims

to assign a specific test case execution order using iterative

action on test cases with the principle that only few of test

cases have ability to determine large set of bugs.

REFERENCES

[1] Edward L. Jones ―Grading student programs – a software

testing‖, Proceedings of the fourteenth annual Consortium for

Computing Sciences in Colleges, 2000.

[2] Miller, William E. Howden, "Tutorial, software testing & validation
techniques", IEEE Computer Society Press,1981.

[3] Ian Somerville, ‖Software Engineering‖, Addison-Wesley,2001.

[4] James Bach, ―Exploratory Testing Explained‖, v.1.3 ,4/16/03.

[5] John E. Bentley, Wachovia Bank, Charlotte NC, ―Software

Testing Fundamentals—Concepts, Roles, and Terminology‖,

SUGI 30.

[6] Myers, Glenford J., ―The art of software testing‖, New York:

Wiley, c1979. ISBN: 0471043281.

[7] Nick Jenkins. ―A Software Testing Primer‖, 2008.

[8] Peter Sestoft,‖ Systematic software testing‖, Version 2,2008-02-25.

